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Abstract 
Variation of recombination rate along the genome is of crucial importance to rapid adaptation and organismal diversification. Many unknowns 
remain regarding how and why recombination landscapes evolve in nature. Here, we reconstruct recombination maps based on linkage disequi-
librium and use subsampling and simulations to derive a new measure of recombination landscape evolution: the Population Recombination 
Divergence Index (PRDI). Using PRDI, we show that fine-scale recombination landscapes differ substantially between two cichlid fish ecotypes 
of Astatotilapia calliptera that diverged only ~2,500 generations ago. Perhaps surprisingly, recombination landscape differences are not driven 
by divergence in terms of allele frequency (FST) and nucleotide diversity (∆(π)): although there is some association, we observe positive PRDI 
in regions where FST and ∆(π) are zero. We found a stronger association between the evolution of recombination and 47 large haplotype blocks 
that are polymorphic in Lake Masoko, cover 21% of the genome, and appear to include multiple inversions. Among haplotype blocks, there is a 
strong and clear association between the degree of recombination divergence and differences between ecotypes in heterozygosity, consistent 
with recombination suppression in heterozygotes. Overall, our work provides a holistic view of changes in population recombination landscapes 
during the early stages of speciation with gene flow.
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Introduction
Meiotic recombination is central to genetics and to evolution 
in sexually reproducing organisms. It facilitates rapid adap-
tation by generating new combinations of alleles (McDonald 
et al., 2016; Nielsen, 2006; Rice & Chippindale, 2001), but 
in some contexts, it can also hinder adaptation by breaking 
up locally adapted haplotypes (Ortiz-Barrientos et al., 2016; 
Schluter & Rieseberg, 2022). Recombination is itself subject 
to selection (Otto & Barton, 2001), and a substantial body 
of theory has been developed describing genetic variants that 
regulate recombination rates, so-called “recombination mod-
ifiers,” and the conditions under which such modifier variants 
would be selected for or against (Coop & Przeworski, 2007; 
Feldman et al., 1996; Nei, 1967). Many genetic variants, both 
cis- and trans- acting, are known to affect the recombination 
rates and the positioning of recombination events (Brand 
et al., 2018; Halldorsson et al., 2019; Rowan et al., 2019; 
Samuk et al., 2017). For example, recombination suppres-
sion is often facilitated by larger structural genetic variants, 
especially inversions (Jay et al., 2018; Todesco et al., 2020), 
although insertions, deletions, and sequence translocations 
have also been implicated (Kent et al., 2017; Rowan et al., 
2019; Schluter & Rieseberg, 2022). Even single-nucleotide 
polymorphisms (SNPs) can modify recombination rates at 
specific loci, as in the case of the ade6-M26 mutation, which 

creates a hotspot of 10 to 15× elevated recombination in yeast 
(Ponticelli et al., 1988; Szankasi et al., 1988).

Recombination is also subject to forces that appear largely 
decoupled from organismal adaptation or diversification. 
First, it must fulfill its essential role in meiosis and chromosome 
segregation (Petronczki et al., 2003). This virtually ubiquitous 
requirement provides a lower bound of one recombination 
event per chromosome (Henderson & Bomblies, 2021) and 
contributes to limiting average recombination rates to a rela-
tively narrow range above this minimum via the mechanism 
of “crossover interference” (Otto & Payseur, 2019). Second, 
in some vertebrate species, principally in mammals, recom-
bination is directed towards binding sites of the zinc-finger 
(ZF) protein PRDM9 (Baker et al., 2017; Baudat et al., 2010; 
Cavassim et al., 2022; Myers et al., 2010). In these species, 
the rapid evolution of recombination landscapes is mediated 
by intra-genomic conflict (Baker et al., 2023; Latrille et al., 
2017; Úbeda & Wilkins, 2010), and genetic variants altering 
recombination landscapes in this way are therefore usually 
studied through the prism of internal genome dynamics and 
not within the framework of traditional recombination mod-
ifier theory (Genestier et al., 2024).

Outside of mammals, in most other vertebrates, recombi-
nation does not appear to be associated with PRDM9 bind-
ing sites (Cavassim et al., 2022). Species lacking the PRDM9 
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mechanism have elevated recombination rates at and around 
genomic features such as CpG islands and promoters, likely 
due to the greater chromatin accessibility in these regions 
(Baker et al., 2017), and there is evidence that species lack-
ing PRDM9 have more conserved recombination landscapes 
(Lam & Keeney, 2015; Singhal et al., 2015). However, the 
association with these genomic features is only partial 
(Singhal et al., 2015), and recombination rates do also evolve 
in species without PRDM9 (Déserts et al., 2021; Ritz et al., 
2017; Samuk et al., 2020). It has even been suggested that in 
stickleback fish, hotspots may evolve at similar rates to those 
observed in species with PRDM9 (Shanfelter et al., 2019).

In the presence of gene flow, recombination counteracts 
the buildup of linkage among genetic loci that contribute to 
population divergence and, ultimately, speciation (Barton, 
2020; Butlin et al., 2021; Felsenstein, 1981). Consistent 
with the important role in this context, a recombination 
landscape, together with natural selection, shapes the distri-
bution of genomic regions of divergence along each chromo-
some (Duranton et al., 2018; Martin et al., 2019; Ravinet 
et al., 2017; Schumer et al., 2018). The recombination land-
scape itself is an evolving dynamic parameter (Déserts et al., 
2021; Ritz et al., 2017; Samuk et al., 2020), which should be 
taken into account in genomic studies of speciation (Ortiz‐
Barrientos & James, 2017; Ortiz-Barrientos et al., 2016). In 
recent years, there has been a growing appreciation of the 
role of recombination suppression in organismal diversifica-
tion (Schluter & Rieseberg, 2022). These efforts often concen-
trated on specific large inversions or other low- recombining 
haplotype blocks (Faria et al., 2019a; Jay et al., 2018; Reeve 
et al., 2023; Todesco et al., 2020). In addition, a recent study 
based on genome-wide estimates of recombination rates sup-
ports the notion that cis-acting recombination modifiers play 
an important role in promoting adaptive divergence between 
populations (Venu et al., 2024). Building upon this initial 
progress, additional comparisons of recombination land-
scapes in different species and across different levels of diver-
gence will be required to understand where in the genome, 
how fast, and by what mechanisms recombination rates 
evolve and, ultimately, the interplay with natural selection 
and organismal evolution.

The Lake Masoko system presents a well-suited opportu-
nity to study the evolution of recombination rates in the con-
text of organismal diversification. Lake Masoko is a small 
(~670 m in diameter) crater lake in Southern Tanzania (Figure 
1A) and is approximately 50k years old (Barker et al., 2003). 
Two ecotypes of the cichlid fish species Astatotilapia calliptera 
have evolved within this lake—the shallow-water “littoral” 
and the deep-water “benthic.” They differ from each other in 
several ecologically important traits and, while almost half 
of the sites have zero FST, there is elevated allele frequency 
divergence at about a hundred of well-demarcated genomic 
regions—islands of divergence (Malinsky et al., 2015). Several 
other fish species belonging to the same clade (Percomorpha) 
lack a functional PRDM9, although A. calliptera itself has not 
been tested (Baker et al., 2017; Cavassim et al., 2022).

Over the last decade or so, many empirical studies used 
recombination estimates based on linkage disequilibrium 
(LD)—patterns of nonrandom association of genetic variants 
in a sample of individuals from a population (Auton et al., 
2012; Shanfelter et al., 2019; Singhal et al., 2015; Spence 
& Song, 2019). LD-based methods estimate a “population 
recombination rate” (ρ)—a population genetic parameter 

which is a product of effective population size (Ne) and the 
historical per-generation recombination rate averaged over 
the ancestry of the sampled individuals. Differences between 
LD-based recombination maps can arise from sampling vari-
ance, methodological limitations, different ancestries across 
samples, and factors affecting Ne such as demographic change 
and natural selection (Coop & Przeworski, 2007; Peñalba & 
Wolf, 2020; Samuk et al., 2020). Therefore, it is challenging to 
use LD-based methods to compare recombination landscapes 
between populations and species to track their evolution.

In this study, we reconstruct genetic maps from patterns 
of LD in whole genome population genetic data of 70 ben-
thic and 69 littoral individuals to investigate the evolution 
of recombination landscapes in Lake Masoko. By carefully 
controlling for confounding factors, we demonstrate that 
the population recombination landscapes are considerably 
different despite the recent split time between these ecotypes 
and we quantify the degree of this population recombination 
rate evolution. The regions where recombination rates differ 
significantly are not distributed equally across the genome. 
We show a link with genetic differentiation, as measured, for 
example, by FST, and with larger haplotype blocks, although 
neither of these fully explain the recombination rate diver-
gence. We found a partial copy of PRDM9 in the A. calliptera 
genome. However, its predicted binding sites do not show any 
relationship with recombination rates, which is consistent 
with previous studies in fishes with partial PRDM9 (Baker 
et al., 2017). Overall, our study quantifies and provides new 
insights into rapid population recombination rate evolution 
in the context of sympatric ecotype divergence.

Methods
Variant calling and filtering
Genomic DNA from a total of 336 individuals from Lake 
Masoko was sequenced on the Illumina HiSeq X Ten platform, 
obtaining 150bp paired-end reads (NCBI Short Read Archive, 
BioProject ID: PRJEB27804). All the reads, without filtering 
or trimming, were aligned to the Astatotilapia calliptera refer-
ence genome fAstCal1.5 (GenBank ID: GCA_900246225.6) 
using bwa-mem v.0.7.17 (Li, 2013). The reference sequence 
is based on an A. calliptera sample from the Itupi stream, 
which is a close outgroup to Lake Masoko. We used the 
MarkDuplicates tool from the Picard package v.2.26.6 to tag 
PCR and optical duplicate reads and GATK v.4.2.3 (DePristo 
et al., 2011) to call variants, using HaplotypeCaller in GVCF 
mode for each individual separately followed by joint geno-
typing using GenotypeGVCFs with the --include-non-variant-
sites option.

Next, we generated a callability mask to identify and filter 
out the regions of the genome where we were unable to confi-
dently call variants. The mask included: (i) sites with an over-
all read depth cutoffs based on examining a depth histogram 
(<3,800, corresponding to the 20.7th percentile or >5,700, 
corresponding to the 97.9th percentile; Supplementary Figure 
1); (ii) sites where more than 10% of individuals had miss-
ing genotypes; (iii) sites identified by GATK as low quality 
(with the LowQual tag) and (iv) sites with poor mappability. 
Specifically, to obtain the mappability information, we broke 
down the genome into overlapping k-mers of 150bp (match-
ing the read length), mapped these k-mers back to the genome, 
and masked all sites where fewer than 90% of k-mers mapped 
back to their original location perfectly and uniquely. In total, 
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the callability mask comprised 311 million bp, or about 35% 
of the genome. In addition to applying the callability mask, 
we used several hard filters based on GATK best practices, 
specifically focusing on mapping quality (MQ < 40), mapping 
strand bias (FS > 40), variant quality normalized by depth 
(QD < 2) and excess heterozygosity when compared with 
Hardy–Weinberg equilibrium (ExcessHet > 40). These addi-
tional filters removed fewer than 1% of the remaining SNPs.

Sample selection for recombination analyses
We used the full set of 336 available individuals for variant 
calling because the inclusion of more samples leads to more 
accurate genotyping. However, in this study, we were specifi-
cally interested in differences between the littoral and benthic 
ecotypes of Lake Masoko. Therefore, we retained 80 individ-
uals assigned in the field as benthic and 79 assigned as littoral 
and excluded 201 other individuals who were not assigned to 
either ecotype because they were juveniles, females (neither cat-
egory show the ecotype-distinct male breeding colors), or puta-
tive hybrids. To check the validity of these field assignments, we 
first built a neighbor-joining tree based on a genetic distance 
matrix, i.e., the average number of single-nucleotide differences 
between each pair of individuals, using the stats command from 
the evo package v.0.1 r28 and the --diff- matrix option. The 
pairwise difference matrix was divided by the callable genome 
size to obtain pairwise distances per base pair, and this was then 
used as input into the nj() tree- building function implemented 
in the package ape in R (Paradis et al., 2004). Next, for prin-
cipal component analysis (PCA) we used smartPCA (Patterson 
et al., 2006) on data filtered for minor allele frequency >=0.05 
using plink v1.9 (Purcell et al., 2007) with the --maf 0.05 option 
and LD pruned using the plugin + prune from bcftools v.1.16 
(Danecek et al., 2021) with the -m 0.8 -w 1000 options.

Genome annotation
Because the fAstCal1.5 assembly was not annotated by NCBI, 
we “lifted over” the annotation from the older fAstCal1.2 
assembly (GenBank: GCA_900246225.3). We used the UCSC 
paradigm (Miller et al., 2007) to generate a pairwise whole 
genome alignment between fAstCal1.2 and fAstCal1.5 assem-
bly. Afterwards, we used the UCSC liftOver tool to translate 
the NCBI Annotation Release 100 to the new coordinates.

Inference of demographic history and estimation of 
the level of gene flow
To estimate split time between the ecotypes and changes in 
effective population size (Ne) through time, we used smc++ 
v.1.15.4 (Terhorst et al., 2017), using the sequence of smc++ 
commands: vcf2smc -> estimate -> split. To translate the 
time axis into a number of generations, we used the cichlid- 
specific mutation rate estimate of µ = 3.5 × 10−9 per bp 
per- generation with 95% CI (1.6 × 10 −9, 4.6 × 10−9) 
(Malinsky et al., 2018). Next, we used fastsimcoal2.7 
(Excoffier et al., 2021) to estimate the level of gene flow 
between the two ecotypes. In fastsimcoal, we entered the split 
time and changes in Ne as inferred by smc++ as fixed param-
eters and estimated continuous asymmetrical migration rates 
after the ecotype split. We ran 30 simulations with different 
starting parameter values, which revealed two local peaks in 
the likelihood surface (Supplementary Figure 2). To reduce the 
confounding effects of selection in these demographic analy-
ses, we used only sites from noncoding regions of the genome, 
masking all annotated exons, introns, and promoters.

Subsampling and permutations over individuals
We first used the shuf -n command to randomly draw a 
set of 35 individuals from each ecotype for the first subset. 
The remaining individuals (35 littoral and 34 benthic) then 
formed the second subset. Therefore, these (a) and (b) subsets 
(Figure 1D) are independent in the sense that they are com-
posed of nonoverlapping sets of individuals. We then gener-
ated a separate VCF file for each subset using the bcftools 
v.1.16 view command and used these VCFs for recombina-
tion map reconstruction. We repeated this random sampling 
procedure (and the following genetic map reconstruction) to 
obtain nine permutation replicates over individuals.

Inference of recombination rates
We used the pyrho software (Spence & Song, 2019) to infer 
recombination rates along the genome based on patterns of 
LD. We choose pyrho because it accounts for demography, 
i.e., changes in Ne through time, and because its performance 
does not depend on haplotype phasing—it performs equally 
well with phased and unphased data [as described in fig. S8 
of (Spence & Song, 2019) and confirmed by our own simula-
tions (data not shown)].

To build likelihood tables for pairs of biallelic sites, we used 
the make_table command with µ = 3.5× 10−9, demographic 
history for each of the ecotypes as inferred by smc++, and the 
Moran approximation with the –approx and –moran_pop_
size N flags where N equals 1.5× the number of haplotypes in 
each subset. Recombination inference is highly influenced by 
the block penalty parameter, which affects the smoothness of 
the map. To determine the best value to use, we processed a 
set of simulations with evolutionary parameters correspond-
ing to the one of our cichlid species (e.g., µ, sample size, Ne) 
and chose the value that was minimizing the quantity of false 
negatives and false positives (Supplementary Figure 3). The 
best results were obtained for block penalty of 15, which was 
then used in all runs of the optimize command with a window 
size of 50 SNPs to infer the recombination maps. The output 
of pyrho contained estimates of recombination rate between 
each pair of SNPs.

Neutral coalescent simulations
We used msprime v.1.0.2 (Baumdicker et al., 2021) to simu-
late genetic data matching the population and demographic 
histories (split time, Ne, and gene flow) that we inferred from 
empirical data as described above. Because recombination 
landscapes were the same for both simulated populations 
and natural selection was absent in these simulations, the 
results from analyzing the simulated data allowed us to better 
evaluate and interpret the empirical results. We ran 23 sim-
ulations—one for each chromosome—using µ = 3.5× 10−9 
and the empirical recombination maps as input. From each 
simulation, we sampled 70 individuals from each population, 
labeled them as “benthic” and “littoral,” randomly subsam-
pled the (a) and (b) subsets and further processed the VCF 
output in the same way as we did for empirical data.

To confirm that the conclusions of this manuscript are 
robust to the specifics of demographic inference, we ran the 
simulations with an extended set of split time values (1,000, 
2,500, 5,000 and 10,000 generations ago) and with migra-
tion rates corresponding to the two local likelihood peaks in 
fastsimcoal2 inference (“low migration rates”: 11.5× 10−5 
for littoral to benthic and 7.01× 10−5 for benthic to littoral; 
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and “high migration rates”: 0.0339 for littoral to benthic and 
0.0368 for benthic to littoral).

We also used msprime to estimate how the inferred recom-
bination maps reflect the relative contributions of recombi-
nation events that happened in the common history of the 
ecotypes vs. events that happened after their split. To do this, 
we counted the number of local genealogies, which reflects 
the recombination events that changed the local genealogy of 
the sample. We used the end_time option in the sim_ances-
try() function of msprime to stop the simulation at the split 
time and counted the distinct genealogies at that time point 
in benthic (Ntb) and in littoral (Ntl) ecotypes—these counts 
reflect the genealogy-changing events that happened in the 
ecotypes after their split. Then, we continued the simulation 
backward in time all the way to the common ancestor of all 
samples and counted the total number of genealogies (Nt). 
Finally, we calculated the proportion of genealogy-changing 
events that happened in the ecotypes after their split (Pas) as:

Pas =
(Ntb − 1) + (Ntl − 1)

(Nt − 1)

The scripts used to run these simulations are available from 
GitHub https://github.com/MarionTalbi/MasokoPaper.

Processing and comparisons of recombination 
maps
We used the PhysicalWindowAverages command from the 
evo package v.0.1 r28 to obtain mean recombination rates 
in identical 2 Kb windows for all datasets, which facilitated 
easy comparisons between different maps. The correlations, 
map distances, and other comparisons were then calculated 
using R scripts, available from GitHub (https://github.com/
MarionTalbi/MasokoPaper).

The first set of comparisons among recombination maps 
was based on correlations, which allowed us to define 
a measure of divergence which we call the Population 
Recombination Divergence Index (PRDI). Briefly, based on 
pairwise Spearman correlations of recombination maps in 
2 kb windows, binned per 5 Mb regions along the genome, 
we first obtained median correlations for the within-ecotype 
replicate maps (denoted mwb and mwl for within-benthic and 
within-littoral replicates, respectively), and the median of all 
map comparisons between ecotypes, denoted mb. We used 
medians rather than means to avoid undue impact of very 
high recombination hotspot values. Between-ecotype correla-
tions are generally lower than correlations for within-ecotype 
replicates and we measure this difference as:

dme = min (mwb,mwl)−mb

The use of minimum over mwb and mwl is the most conser-
vative choice. The dme measure is derived from the empirical 
data. We also define an analogous measure, dms based on the 
simulated data to account for the separation of recent benthic 
vs. littoral ancestry. Finally, PRDI, our measure of recombina-
tion landscape divergence is defined as the difference between 
these two values:

PRDI = dme − dms

The second set or comparisons was based on recombi-
nation map distances. Map distances were calculated in 
nonoverlapping 100 kb windows (i.e., vectors of 50 values 
for 2 kb each) using the dist() function in R. We use log10 

transformed absolute (Manhattan) distances because these 
are straightforward to interpret: a log10 distance of 1 signi-
fies an average difference in recombination estimates of one 
order of magnitude. To find the regions of the genome where 
the recombination distance between the ecotypes was signifi-
cantly elevated, which we refer to as ∆(r) outliers, we used 
the following procedure. We first calculated the recombina-
tion distances in comparisons of within-ecotype replicate 
maps (denoted ∆(r)_w). Then, we calculated the analogous 
measure for map comparisons between ecotypes (denoted 
∆(r)_b). Finally, we calculated the standard deviation of 
the log10 transformed ∆(r)_w measure across the permuta-
tion replicates (we denote this standard deviation as sdw) and 
used the cutoff of three standard deviations to define outliers. 
Specifically, we refer to any 100 kb interval of the genome as 
a ∆(r) outlier if it satisfies the following inequality:

−log10
[
∆(r)b

]
> − log10

[
∆(r)w

]
+ 3 ∗ sdw

Filtered maps
The reliability of LD-based recombination rate inference var-
ies across the genome, depending on several factors, includ-
ing miscalled variants, errors in the reference genome, and 
amount of genetic variation (i.e., amount of data available 
for inference). To understand how our results are affected 
by these factors, we generated filtered recombination maps 
where the less reliable regions of the genome were masked. 
While the main figures of this manuscript report the results 
for the raw maps, we conducted many of the key analy-
ses also using the filtered maps and present these results as 
Supplementary Figures.

First, errors in the reference genome can mistakenly place 
in physical proximity genetic variants that have large genetic 
distances between them. Therefore, we masked intervals 50 kb 
upstream and 50 kb downstream of each run of unspecified 
bases (“N” characters). These runs of Ns mark contig joints, i.e., 
joints between contiguous sequences in the assembly. There 
were 514 joints on the 22 chromosomes, leading to masking 
of 50.46 Mb of sequence. Second, we used the callability mask 
produced for variant filtering (see above). A lack of data can 
make recombination inference difficult. We reduced this effect 
by masking each 100 kb region within which more than 70% 
were not callable. Third, to exclude regions where the recom-
bination maps showed especially elevated sampling noise, we 
took advantage of the permutation replicates and masked all 
100 kb regions where the difference in inferred recombination 
rates between the replicate maps was greater than one order 
of magnitude. Overall, the filtered recombination maps had 
masked a total of 264 Mb, or approximately 30.6% of the 
chromosomes, which is about 5% less than what was filtered 
out by the callability mask during genotype filtering.

Hotspot analyses
A recombination hotspot is a narrow region of unusually 
elevated recombination rate. When searching for hotspots 
in our data, we required the local recombination rate esti-
mate in any inter-SNPs interval to be at least five times higher 
than a background rate, in keeping with common practice 
(Raynaud et al., 2023; Singhal et al., 2015). For the back-
ground recombination rate, we applied three definitions the 
(i) mean rate in 40 kb around the interval (20 kb before and 
20 kb after), (ii) mean rate in 1Mb around the interval, and 
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(iii) mean recombination rate for the whole chromosome as 
in (Halldorsson et al., 2019). The use of these three different 
backgrounds resulted in three sets of hotspots. In most cases, 
several neighboring intervals were identified as being a part of 
a hotspot, and these intervals were merged using the bedtools 
v2.29.2 merge command if the distance between such inter-
vals was less than 1 kb. The proportion of overlap between 
hotspots from different maps was calculated using the inter-
sect command from bedtools v2.29.2 with default parameters, 
meaning that hotspots were considered overlapping if they 
shared at least 1bp. When considering the mean recombina-
tion rates around hotspots, we normalized the highest point 
in each hotspot to equal 1.0, so that all hotspots were con-
sidered equal. Some hotspots were very long and contained 
implausibly large fractions of recombination, a phenomenon 
also reported by other studies (Auton et al., 2012; Hoge et al., 
2024). We removed hotspots longer than 5kb from the above 
analyses and from the search for sequence motifs described 
below.

Measures of genetic differentiation
To assess the degree of genetic differentiation between the ben-
thic and littoral ecotypes for windows along the genome we cal-
culated FST and the difference in nucleotide diversity (π), which 
we call ∆(π). Our FST calculation implements the Hudson 
estimator, as defined in equation 10 in Bhatia et al. (2013), 
using “ratio of averages” to combine estimates across multiple 
variants. To calculate nucleotide diversity for each ecotype, we 
divide the average number of differences between any two hap-
lotypes by the number of callable sites in each genomic win-
dow. These calculations are implemented in the Fst command 
of the evogenSuite software, with the -- accessibleGenomeBED 
option providing an inverse of the callability mask. We did this 
(i) for physical windows of 2Kb (-f option) and (ii) for 20 SNPs 
windows along the genome (-w option).

Distance from CpG islands and transcription start 
sites
We used two different definitions of CpG islands (CpGi). 
First, consistent with (Baker et al., 2017), we used the 
maskOutFa and cpg_lh command from UCSC utils. This 
approach stipulates a minimum of 50% GC content for defin-
ing a CpGi. This resulted in 17 000 CpG islands representing 
a total of 8.5 Mb. Because GC content in the genome is lower 
in percomorpha that in vertebrates due to less biased gene 
conversion toward GC (Escobar et al., 2011) and constrain-
ing the definition of CpG island by GC content may not be 
the most appropriate here. We thus also used the cpgplot 
-minoe 0.6 -minpc 0 command from EMBOSS software 
(Rice et al., 2000), which resulted in a much greater num-
ber (228,069) of CpGi. For the Transcription Starting Sites 
(TSS), we used the genome annotation described before. We 
then used the intersect -v and closest command from 
bcftools v.2 to obtain the mean recombination rates in 
2Kb and 10Kb associated with the distance of the closest TSS 
nonoverlapping with a CpGi and vice versa. We finally used 
the loess function in R to obtain the relative recombination 
rate depending on the distance with the closest TSS or CpGi.

Inference of haplotype blocks
To discover large-scale variation shared by loci along the 
genome, we used the program lostruct that visualizes 
the local effect of population structure (Li & Ralph, 2018). 

lostruct summarize the pattern of relatedness in a local 
PCA for nonoverlapping windows along the genome and cal-
culate the dissimilarities between each pair of local PCAs. It 
then uses multidimensional scaling (MDS) to visualize rela-
tionships between windows. We ran lostruct for each 
chromosome separately on 100 SNPs windows. We then plot 
the first and second axis of the MDS against the genome posi-
tion. We manually identified 47 regions with high MDS val-
ues and high difference in the MDS scores (Supplementary  
Figure 4). To visualize population structure in lostruct 
outliers, we used smartPCA (Patterson et al., 2006) on data 
filtered for minor allele frequency >=0.05 using plink v1.9 
(Purcell et al., 2007) with the --maf 0.05 option but did 
not filter based on LD.

Characterization of haplotype blocks
To better understand the evolutionary history of each of the 
47 haplotype blocks we calculated several population genetic 
statistics in these regions. First, we calculated the proportion 
of heterozygous sites for each individual (Hind) and used the 
kmeans function in R with k = 2 to assign these values into 
two clusters. Then, we used the binomial distribution to test 
if the proportion of high-heterozygosity individuals (in the 
Hind cluster) was different between the ecotypes. The inbreed-
ing coefficient F was calculated for each SNP using our R 
code. To estimate the time to the most recent common ances-
tor (TMRCA) we calculated pairwise dxy (i.e., the number of 
differences in the nucleotide sequence) among all individu-
als. We took the maximum value of pairwise dxy within each 
of the 47 local PCA outliers to approximate the TMRCA as 
ÿ�TMRCA =

Max(dxy)
2∗ µ  (acknowledging that this can be a slight 

underestimate of the true TMRCA of individual sequences 
because of using unphased data).

We then manually assigned ten control regions of a length 
of 3.9Mb, corresponding to the mean length of the local PCA 
outlier regions, that we chose to lie in regions of low MDS1 
and MDS2 scores. The relative enrichment for each negative 
value of F in the local PCA outliers in comparison with the 
control regions was calculated as the relative proportion of 
SNPs from each category (outliers vs. controls) in each inter-
val of F values using our R code.

The highly differentiated regions (HDRs) were defined 
analogously to ref. (Malinsky et al., 2015). We took the 
top 1% of the FST values in 20 SNP windows (calculated as 
described above) and merged the windows that were within 
10 kb of each other. This resulted in 352 HDRs, which is very 
similar to the 344 HDRs found in (Malinsky et al., 2015). 
The permutation test used to assess significance of mean FST 
per each local PCA outlier was implemented using custom R 
script. Briefly, for each local PCA outlier we sampled 1,000 
random genomic windows of the same size, obtaining a null 
distribution of FST values, and considered the FST significantly 
elevated when it fell within the 5% of this distribution.

PRDM9 ortholog research and distance from ZF 
binding motif
To find the PRDM9 ortholog in A. calliptera, we used the 
blastp command (Altschul et al., 1990) using as query the 
PRDM9 protein sequence from the Atlantic salmon Salmo 
salar (Gene ID 100380788) against the NCBI RefSeq database 
(O’Leary et al., 2016) for the species Astatotilapia calliptera. 
Using the best matching protein sequence (XP_026034002.1), 
we applied a ZF motif predictor (Persikov & Singh, 2014; 
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Persikov et al., 2009) to obtain the position weight matrix 
representing the binding site prediction based on 11 identi-
fied ZF domains. We then used the FIMO command from the 
MEME Suite (Bailey et al., 2015) on the reference genome 
of our species to localize the binding sites. We then used the 
intersect -v and closest command from bcftools 
v.2 to obtain the mean recombination rates in 2Kb with the 
distance of the closest ZF binding DNA motif.

Contribution of genomic features to recombination 
divergence
In Table 1, we summarize how recombination outliers (∆(r) 
outliers) coincide with different genomic regions (10 % 
regions of higher FST, high ∆(π), lostruct outliers, and 
predicted PRDM9 binding sites). The excess of ∆(r) outli-
ers in these regions was calculated by dividing the proportion 
of ∆(r) outlier sequence length overlapping these regions by 
the proportion of the genome taken up by the regions. The 
significance of excess overlap was calculated using 1,000 per-
mutations with the R package regioneR v. 1.34.0 (Gel 
et al., 2016).

Results
Study system and demographic history
We obtained whole genome short read sequences of 159 male 
individuals, each of which was assigned to either the ben-
thic or littoral ecotype based on a field photograph. Median 
sequencing coverage was 15.8 × (min = 12.4×, max = 22.1×). 
After variant calling and filtering, we discarded 1.4 million of 
multiallelic sites and indels and kept 3.86 million SNPs. To 
check the validity of the field assignment we used the genetic 
data to run a PCA (Figure 1B) and reconstructed a Neighbor-
Joining tree (Supplementary Figure 5). While no individuals 
were misassigned, we identified 20 individuals that appeared 
to be genetically intermediate, which may be the result of 
recent hybridization. Because our goal was to focus on the 
differences between the ecotypes, we removed the intermedi-
ate individuals (gray in Figure 1B). The final VCF with 139 
individuals was composed of 3.3 million biallelic SNPs, and 
this was used for all the following analyses.

To obtain a more accurate understanding of the historical 
demographic context of the ecotype divergence, we first used 
the program SMC++ (Terhorst et al., 2017) to infer the recent 
changes in effective population size. Consistent with previ-
ous results (Malinsky et al., 2015), we find a bottleneck that 
may be related to the lake colonization, followed by recent 
demographic expansions in both ecotypes (Figure 1C). This 
approach also allowed us to reestimate the split time between 
the two ecotypes, which we now put at ∼2,500 genera-
tions ago (95% CI: 1,902 to 5,469 generations). While this 
is considerably older than reported previously (Malinsky et 

al., 2015), this difference is primarily a result of using the 
cichlid-specific mutation rate from (Malinsky et al., 2018) in 
place of the human mutation rate used in the previous study. 
We also estimated the amount of gene flow between the eco-
types using fastsimcoal2, with best migration rate estimates 
being 11.5× 10−5 for littoral to benthic and 7.01× 10−5 for 
benthic to littoral, although higher migration rates of 0.0339 
for littoral to benthic and 0.0368 for benthic to littoral had 
almost equivalent likelihoods and appear more realistic given 
the number of intermediate individuals we found (Figure 1B; 
Supplementary Figure 5; see Methods section).

Population recombination landscapes differ 
between ecotypes
First, to quantify the effects of sampling variability and meth-
odological limitations, we divided the individuals from each 
ecotype into two independent subsets and reconstructed a sep-
arate recombination map for each subset (Figure 1D). Thus, 
we obtained a total of two replicate maps for each ecotype. 
Spearman correlation between the replicate maps from the 
same ecotype (within-ecotype) was 0.77 for within- littoral 
and 0.71 for within-benthic comparisons at 2 kb scale (Figure 
2A; see Methods section). The relatively low correlation coef-
ficients for the within-ecotype replicates reflect a sensitivity 
of recombination rate inference to sampling variance. Next, 
we made recombination landscape comparisons between 
ecotypes (in gray in Figure 2A) and found that the correla-
tion coefficients were considerably lower than within eco-
types (mean Spearman correlation = 0.57). The difference in 
median correlations (within vs. between ecotypes) which we 
denote dme was thus 0.71–0.57 = 0.14 (see Methods section). 
The key result, i.e., that between-ecotype correlations are 
consistently and considerably lower than for within- ecotype 
replicates holds across genomic scales from 2 kb to 5 Mb 
(Supplementary Figure 6). It is also highly consistent across 
replicate maps obtained by splitting the ecotypes into differ-
ent subsamples of individuals by permutation (Supplementary 
Figure 6).

To account for the separation of recent benthic vs. littoral 
ancestry, which leads to nonrandom sampling of recombina-
tion histories, we conducted neutral coalescent simulations 
assuming that recombination landscapes were the same for 
both ecotypes. First, we used msprime to simulate genetic data 
matching our best estimates of population and demographic 
histories (split time, Ne, and gene flow) that we inferred from 
empirical data as described above. Based on data simulated 
under these best-estimate parameters, the within-ecotype vs. 
between-ecotype difference in median recombination map 
correlations, which we denote dms was 0.046 (Figure 2B), 
which was approximately three times lower than in empirical 
data (empirical dme = 0.140 vs. simulation dms = 0.046). We 
consider this difference (dme − dms) to be a meaningful measure 

Table 1. Genomic regions underlying recombination rate evolution.

Feature ∆ (r) outlier proportion ∆ (r) outlier excess Permutation p-value Mean ∆ (r) (log10)

High FST (top 10%) 13.7% +58.3% <0.001 0.109

High ∆ (r) (top 10%) 12.8% +47.8% <0.001 0.153

Local PCA outliers 31.6% +47.5% 0.031 0.133

PRDM9 binding sites 0.08% −8.31% 1 0.106
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of recombination landscape evolution and refer to it as the 
PRDI (see Methods section; Figure 2C). The expected value of 
PRDI is zero if there is no difference in the population recom-
bination landscapes between the ecotypes, and the magnitude 
of a positive PRDI indicates the degree of change.

Because the PRDI estimate depends on the parameters used 
in the simulations and because there are uncertainties regard-
ing the correct values for these parameters, we conducted 
additional simulations across a broad range of split times and 
using both the higher and lower migration rate estimates from 
fastsimcoal2. We found that with the higher migration rates, 
PRDI estimates were consistently high, around 0.14 across 
the full range of split times, because dms hovered around zero 
reflecting the intertwined ancestries of the ecotypes in the pres-
ence of high migration (Figure 2C). With the low migration 
rates, PRDI was lower and depended on the simulated split 
time, reaching a minimum of 0.07 when we simulated ecotype 
divergence 10,000 generations ago (Figure 2C). Overall, these 
results provide evidence that the population recombination 

landscapes differ between the ecotypes, with the magnitude of 
divergence estimated by PRDI to be between 0.07 and 0.14.

To further confirm that the observed recombination differ-
ences between benthic and littoral were not driven by tech-
nical artifacts (e.g., implausibly large false positive hotspots, 
Auton et al., 2012) in regions of the genome where inference 
is especially error-prone, we applied a stringent filtering mask 
(see Methods section). This eliminated a substantial propor-
tion of noise from the inferred recombination maps across 
all genomic scales from 2 kb to 5 Mb (Supplementary Figure 
6). We repeated all the analyses above using these filtered 
maps and found that, despite the strictness of the filtering, the 
results, and specifically the dme and PRDI estimates were vir-
tually the same as for the raw maps (Supplementary Figures 6 
and 7A). We also verified that the dms estimates and PRDI do 
not depend on the reference map that is used as input for the 
coalescent simulations (Supplementary Figure 7B).

In Lake Masoko A. calliptera, the ancestry for the sampled 
individuals extends substantially beyond the ecotype split 

Figure 1. Study system and demographic history. (A) Lake Masoko is a circular small (~670 m diameter) maar-type volcanic crater lake located in 
the East African rift valley in southern Tanzania. (B) A principal component analysis based on 784,974 SNPs. Some individuals labeled in the field as 
“benthic” or “littoral” turned out to be genetically admixed. The genetic maps presented and examined in this study are based on individuals with little 
to no admixture, highlighted in yellow for littoral and blue for benthic. (C) SMC++ inference of demographic history—the changes in effective population 
sizes (Ne; x-axis)—through time (y-axis). After the split time, the population sizes for the littoral ecotype are shown in yellow and for the benthic in blue. 
(D) We divided the individuals from each cichlid ecotype (littoral, benthic) of Lake Masoko into two independent subsets, “subset a” and “subset b.” 
Each subset and the recombination maps inferred using the subsets represent biological replicates.
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time (Figure 1C), which means that the inferred recombina-
tion maps for each ecotype can be interpreted as a mixture of 
two time periods: (i) recombination events that happened in 
the common history of the ecotypes and (ii) events that hap-
pened after their split. To estimate the contribution of each of 
these epochs, we used coalescent simulations and found that, 
across ten simulations with the best-estimate split time of ∼
2,500 generations ago, an average 34.9% of recombination 
events that changed the genealogy of the sample occurred 
after the split (min = 34.4%; max = 35.7%; see Methods sec-
tion). These are the recombination events that make up the 
differences between the recombination landscapes between 
the ecotypes.

Recombination landscapes are highly heterogenous, and 
a large proportion of events tends to occur in so-called 
“hotspots” (Coop & Przeworski, 2007; Peñalba & Wolf, 
2020). We quantified the heterogeneity of recombination 
along the genome in the A. calliptera of Lake Masoko and 
found that 50% of all events were concentrated in less than 
9.6% of the genome (Supplementary Figure 8A; min: 8.9%; 
max: 10.4%, depending on the ecotype and the subsample). 
Therefore, the concentration of recombination in hotspots 
can be considered intermediate—substantially lower than, 
for example, in humans, but higher than, for example, in the 
plant Arabidopsis thaliana (Supplementary Figure 8A). Using 
a definition of hotspots as having at least 5x higher recom-
bination rate than the 500 kb of surrounding sequence, we 
found on average 2,322 hotspots in each recombination map 
(between 2,275 and 2,345; Supplementary Table 1). Only 
41.5% of hotspots were shared when comparing “a” and 
“b” replicate maps within the same ecotype, showing that 
hotspot detection is particularly sensitive to sampling vari-
ance. Nevertheless, we again observed the same pattern as for 

correlations – the comparisons between benthic and littoral 
maps showed even less hotspot overlap than expected based 
on simulations (Supplementary Figure 8). Qualitatively simi-
lar results were obtained using three different hotspot defini-
tions (Supplementary Figure 8C).

Characterizing recombination rate evolution
The changes in recombination landscapes measured by 
LD-based maps are based on effective recombination—the 
recombination events present in the ancestry of the sampled 
individuals—and are directly influenced by divergent selec-
tion between the ecotypes. Therefore, we next investigated the 
relationship between recombination rates and genetic diver-
gence between the ecotypes in terms of allele frequencies (FST) 
and levels of nucleotide diversity (∆(π)) along the genome. 
As expected, we found that PRDI generally increased with FST 
and ∆(π), consistent with an effect of divergent selection on 
genotypes (Figure 3A). However, we observed positive PRDI 
not only in regions of particularly high FST or ∆(π), but also 
at low levels of genetic divergence (Figure 3A). Therefore, 
the evolution of recombination landscapes is not driven by 
divergent selection on genotypes (e.g., selective sweeps), and/
or the effect that differences in π can have on the accuracy of 
recombination inference (Supplementary Figure 3; Raynaud 
et al., 2023). Moreover, equivalent results were obtained for 
filtered maps, providing additional confidence regarding the 
robustness of these conclusions (Supplementary Figure 9A).

To explore how the differences in recombination between 
the ecotypes are distributed across the genome, we calcu-
lated the mean difference in recombination rates between 
the inferred genetic maps in 100 kb windows (see Methods 
section). The average recombination distance between ben-
thic and littoral maps (denoted ∆ (r)b) was greater than the 
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distance for within-ecotype replicates (denoted ∆ (r)w) in 
83.1% of the windows (Figure 3B). This metric allowed us 
to identify genomic regions with rapidly diverging recombi-
nation rates. In the following, we use the “net recombination 
distance” ∆ (r) = ∆ (r)b − ∆ (r)w and give particular focus 
to “ ∆ (r) outliers”—regions where the between- ecotype 
distance is more than three standard deviations higher than 
within ecotypes. These outliers correspond to 42.7Mb of 
sequence, which is about 5% of the genome.

We found that ∆ (r) outliers are not uniformly distributed 
across chromosomes; for example, they cover only 1.2% of 
chromosome 15 (LS420033.2) but over 11.9% of chromosome 
1 (LS420019.2) (Supplementary Figure 10A). Furthermore, 
the proportion of outliers across chromosomes is positively 
correlated with average per-chromosome FST. Although this 
chromosome-wide link is only moderately strong and not 
statistically significant (Pearson correlation = 0.18; p = 0.42; 
Supplementary Figure 10B), when looking directly at ∆ (r) 
outliers, we found that both FST and ∆(π) were significantly 
elevated (Mann–Whitney U test: p = 1.88× 10−6 for FST and 
p = 5.5× 10−7 for ∆(π)), clearly confirming that there is 
an association between allele frequency divergence and the 
most rapidly evolving population recombination landscapes 
(Figure 3C).

Given the rapid evolution of recombination rates across the 
genome, we wanted to verify whether the PRDM9 mechanism 
may be active in Lake Masoko A. calliptera. As in several other 
percomorph species (Cavassim et al., 2022), we found one 
incomplete PRDM9 ortholog missing the KRAB and SSXRD 
domains that appear to be necessary for PRDM9 to direct 
recombination (Baker et al., 2017). Consistent with this, 
recombination rates were elevated at and near CpG islands 
(∼1.2× higher; Supplementary Figure 11) and transcription 
start sites (TSS; ∼1.3× higher; Supplementary Figure 11), a 
pattern that is similar to that reported previously for sword-
tail fish (Baker et al., 2017). Because the PRDM9 ZF array in 
A. calliptera was intact, we predicted its binding sites across 
the genome and found no increase in recombination rates at 
or near the binding sites (Supplementary Figure 11). Overall, 
these results confirm that PRDM9 does not direct recombina-
tion in A. calliptera and, therefore, cannot contribute to the 
rapid evolution of recombination rates in this system.

Large haplotype blocks contribute to evolution of 
recombination rates
Ecotype divergence and speciation in the face of gene flow 
are often facilitated by regions of suppressed recombination, 
which allow a buildup of linkage between multiple loci under 
divergent selection (Faria et al., 2019b). Nonrecombining 
haplotype blocks can be revealed as extended regions of the 
genome with distinct population structures substantially dif-
ferent from the genome-wide average (Ma & Amos, 2018; 
Mérot, 2020; Todesco et al., 2020). To look for such regions, 
we used a local PCA approach (Li & Ralph, 2018) and iden-
tified a total of 47 outliers (Supplementary Figures 4 and 12), 
ranging in size between 550 kb and 25.7 Mb (mean 3.9 Mb) 
and covering a total 21.4% of the genome. Importantly, these 
regions contain 31.6% of ∆(r) outliers and thus contribute 
disproportionately to the observed differences in recombi-
nation rates between the ecotypes (Table 1). Consistent with 
this, we found that the signal of recombination rate evolution 
measured by PRDI is about 10% stronger in the local PCA 
outliers than in the rest of the genome (Supplementary Figure 
13). At the same time, it should be emphasized that there is 
also a strong PRDI signal of recombination rate evolution 
outside of these blocks (Supplementary Figure 13).

Large haplotype blocks can be the result of a lack of recom-
bination between alternative haplotypes segregating in Lake 
Masoko. We hypothesized that, on average, recombination 
would be reduced in the ecotype with a higher proportion of 
individuals who are heterozygous for such nonrecombining 
haplotypes. Therefore, for each local PCA outlier region, we 
clustered the individuals based on individual heterozygosity, 
that is, the proportion of heterozygous sites per individual 
(Hind). An example of a local PCA outlier region associated 
with differences in recombination is shown in Figure 4, with 
strong benthic vs. littoral clustering by Hind illustrated in 
Figure 4C.

As predicted, across the 47 haplotype blocks, we found a 
significant positive association between ∆ (r), the net recom-
bination distance between ecotypes and the degree of ecotype 
clustering by Hind (Figure 5A). Additionally, PRDI was sub-
stantially elevated in the haplotype blocks with significant 
of ecotype clustering by Hind (Supplementary Figure 13).  
In contrast, the association of ∆ (r) with allele frequency 
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divergence (mean FST per haplotype block) with was less pro-
nounced and not statistically significant (Figure 5B).

Next, we focused on gathering evidence regarding the 
nature and origin of individual haplotype blocks. Local PCA 
outliers could be explained, for example, by linked selection, 
recent admixture from outside of Lake Masoko, or by locally 
low recombination rates. We found that some of the regions 
we identified by local PCA show signatures characteristic of 
polymorphic inversions, including (i) long haplotypes with 
consistent sharp edges in multiple individuals, (ii) distinct 
homozygote vs. heterozygote clusters in PCA, and (iii) unusu-
ally high values of individual heterozygosity (Supplementary 
Figures 14 and 15).

To investigate if the heterozygous state is overrepresented 
within local PCA outliers, which would be consistent with 
a form of balancing selection, we compared the distribution 
of inbreeding coefficient (F) per SNP against SNPs from a 

set of control regions (see Methods section). We found a 
significant enrichment of SNPs with negative F—that is, 
excess of heterozygotes—in the local PCA outliers, with up 
to 9-fold enrichment for the SNPs at the lowest values of 
F (Figure 5C). We expected that the haplotype blocks with 
the lower value of inbreeding coefficient might have been 
maintained as polymorphism for a long time through the 
effect of balancing selection. Therefore, for each PCA out-
lier, we estimated the time TMRCA. Perhaps surprisingly, 
we found that the ancestry of most of these regions was 
of a similar age as the genome-wide average, with only a 
few that were clearly much older (Figure 5D). There was a 
weak and not statistically significant trend of older regions 
having a lower inbreeding coefficient. Therefore, we con-
clude that the effect of balancing selection on maintaining 
polymorphic haploblocks appears to be limited in the Lake 
Masoko ancestry.
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Finally, we investigated in more detail the link between 
allele frequency divergence and the local PCA outliers in Lake 
Masoko. We found that only seven out of the 47 regions had a 
significantly elevated average level of FST; of these, there were 
six regions of average age and one old region whose ancestry 
dates back almost 1.5M generations ago (Figure 5E). Islands 
of differentiation—also referred to as highly diverged regions 
(HDRs), defined as in ref. (Malinsky et al., 2015)—also did 
not appear in many of the local PCA outliers. While four of 
the local PCA outliers contained more than ten HDRs each, in 
total, only 15 local PCA outliers contained at least one HDR 
(Figure 5E; Supplementary Table 2).

Discussion
The landscape of recombination across the genome is not static 
but evolves through time. In this study, we undertook a holis-
tic investigation of recombination rate evolution between two 
ecotypes that diverged very recently, in sympatry with gene 
flow, and adapted rapidly across multiple phenotypic traits 

to new lake environments (Malinsky et al., 2015). Given eco-
type divergence at many—at least a hundred or so—genomic 
loci (Malinsky et al., 2015), we could expect that recombi-
nation, or the lack thereof, would be important in bringing 
together and keeping together the alleles that are beneficial 
in each environment (Battlay et al., 2023; Ortiz-Barrientos et 
al., 2016; Schluter & Rieseberg, 2022; Todesco et al., 2020). 
Our findings reveal, characterize, and quantify substantial 
differences in population recombination rates between the 
ecotypes, complementing previous studies of divergence in 
ecology, mate choice, and allele frequencies (Malinsky et al., 
2015), methylation (Vernaz et al., 2022), gene expression 
(Carruthers et al., 2022), and in sex determination (Munby 
et al., 2021).

The use of LD-based maps, integrating over a large num-
ber of recombination events throughout the ancestry of the 
ecotypes, allowed us to analyze recombination landscape 
evolution at a fine scale. Despite the challenges inherent in 
such comparisons, we used subsampling (replicate maps 
from the same ecotype) and extensive simulations to derive 
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meaningful measures of evolution in population landscapes. 
We show how the recombination differences are distributed 
across the genome, how they are linked to allele frequency 
divergence (FST; ∆(π)) and to large haplotype blocks identi-
fied by local PCA.

As we expected, we found a link between recombination 
rate divergence and regions of high allele frequency diver-
gence. This link can be expected for a variety of reasons—for 
example, local recombination rates can impact inference of 
FST (Booker et al., 2020), they partly determine the extent of 
background selection which can affect FST (Burri et al., 2015; 
Matthey-Doret & Whitlock, 2019), and they play a major 
role in in the formation of genomic islands of divergence 
during speciation with gene flow (Cruickshank & Hahn, 
2014; Feder et al., 2012). Moreover, selection on genotypes 
(e.g., incomplete selective sweeps) is directly reflected in 
LD-based recombination maps (in contrast to gamete-based 
or pedigree-based maps) (Coop & Przeworski, 2007; Peñalba 
& Wolf, 2020). Given these considerations, it is surprising 
that allele frequency divergence does not appear to be the 
main driver of the observed recombination rate differences. 
For example, only 13.7% of significant differences in recom-
bination, i.e., ∆(r) outliers, are colocated with the top 10% 
of FST (Table 1), and PRDI is substantially positive in regions 
where FST and ∆(π) are zero.

A stronger link was identified between recombination rate 
evolution and local PCA outliers, which are characterized 
by large haplotype blocks and comprise more than a fifth 
of the genome. Some of these blocks carry clear signatures 
characteristic of inversions. However, it remains to be seen 
what mechanisms give rise to the remaining blocks where the 
haplotype structure and local relationships among individu-
als are more complex. In many cases we see many clusters in 
the local PCA, which is consistent with signatures of multiple 
overlapping inversions segregating locally in the population 
(Faria et al., 2019a). There is growing evidence that haplotype 
blocks caused by large inversions are present in many species 
(Wellenreuther & Bernatchez, 2018), often comprise con-
siderable proportions of the genome, and have clear links to 
adaptation and diversification in both animals (Blumer et al., 
2024; Faria et al., 2019a; Harringmeyer & Hoekstra, 2022; 
Reeve et al., 2023) and plants (Battlay et al., 2023; Todesco 
et al., 2020). Therefore, future work should focus on explor-
ing the dynamics of inversions in the Lake Masoko system in 
greater detail.

We have focused on large haplotype blocks because the 
local PCA approach facilitates their study from short-read 
data in a population genomic context. However, the recom-
bination suppression effect of structural variants does not 
depend on the size of the variant region, and other types of 
structural variation can also suppress recombination (Kent et 
al., 2017; Mérot et al., 2020; Rowan et al., 2019). Therefore, 
it is likely that shorter structural variants are responsible 
for at least some of the remaining ∆(r) outliers, which are 
not accounted for in our current study. Further reduction in 
the cost of long-read sequencing will, among other benefits, 
enable more unbiased population-scale analyses of structural 
variants and their roles in the evolution of recombination 
landscapes (Coster et al., 2021).

We found substantial recombination landscape evolution 
where the ecotypes cluster by individual heterozygosity levels 
(Figure 5A; Supplementary Figure 13). This could be because 
inversions prevent crossover formation only in the gametes of 

heterozygous individuals (Faria et al., 2019b). A recent study 
using pedigree-based recombination maps raises an additional 
possibility. Venu et al. (2024) found that regions with higher 
heterozygosity have lower recombination rates due to haplo-
type incompatibilities between diverging ecotypes. Therefore, 
the same mechanism could play a role in the divergence of 
recombination landscapes seen in Lake Masoko.

More general and important open questions concern-
ing the nature of selection on recombination. Which of the 
observed differences in population recombination rates are 
a result of changes in the distribution of crossovers during 
gamete formation? And which changes are an indirect effect 
of subsequent selection for or against specific genetic vari-
ants and recombinant haplotypes? Is there any effect of 
recombination plasticity (Henderson & Bomblies, 2021) 
arising from the ecotypes occupying different environments? 
These questions are not possible to answer conclusively 
with LD-based estimates alone. Future comparison of our 
LD-based maps against recombination landscapes obtained 
by sequencing of gametes and/or individuals related by ped-
igrees will likely shed further light on this question (Peñalba 
& Wolf, 2020).

Our finding of rapid recombination rate evolution, while 
consistent with some previous studies (Déserts et al., 2021; 
Shanfelter et al., 2019), seems to conflict with the current par-
adigm of evolutionary stability of recombination landscapes 
in species lacking the PRDM9 mechanism (Lam & Keeney, 
2015; Singhal et al., 2015). However, this is not as surprising 
as it may appear because it is common that different tem-
pos of molecular evolution are observed between micro- and 
macro-evolutionary timescales (Rolland et al., 2023). For 
example, recombination suppression by inversions may be a 
temporary phenomenon and may disappear once one of the 
inversion alleles rises to fixation. At the same time, evidence 
is emerging that even in many species with an intact PRDM9 
mechanism, a large fraction of recombination can take place 
outside of PRDM9 directed hotspots, so the dichotomy of 
mechanisms may not be as clear as previously thought (Hoge 
et al., 2024; Joseph et al., 2024).

Adaptation and organismal diversification are increasingly 
seen as multidimensional and combinatorial, typically with 
the involvement of multiple polygenic traits and epistasis 
(Barton, 2022; Marques et al., 2019; Yeaman, 2022), and the 
relative genetic distances between the loci involved constitute 
key parameters. Comparative studies are starting to shed light 
on recombination landscape evolution across populations and 
species with different demographic histories, genomic archi-
tectures, ecological contexts, and divergence times. However, 
this is still typically done at a rough Megabase-scale resolution 
(Brazier & Glémin, 2022; Haenel et al., 2018). We adopted 
the LD-based approach, enabling us to infer fine-scale rates 
and show that they can evolve rapidly. We envisage that the 
large and growing amount of population genomic data avail-
able will enable the construction and comparisons of many 
LD-based maps, such as in our current study. Together with 
advances in gamete typing and pedigree-based methods, this 
will make recombination rates and their fine-scale evolution 
into integral parts of future genomic studies of adaptation 
and speciation.

Supplementary material
Supplementary material is available online at Evolution.
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Data availability
Genomic DNA from all 336 individuals used in this study 
is available from the NCBI Short Read Archive (BioProject 
ID: PRJEB27804). The VCF file and recombination maps 
are available on DataDryad (https://doi.org/10.5061/dryad.
v15dv425w). The code used to analyze the data is available 
on GitHub (https://github.com/MarionTalbi/MasokoPaper).

Author contributions
M.M. conceived and designed the study with input from 
M.T.; M.T. conducted the analyses with guidance from M.M.; 
G.F.T. led the fieldwork, identified samples, and obtained the 
genome data. M.T. and M.M. wrote the manuscript, with 
comments from G.F.T.

Funding
This work was funded by a Swiss National Foundation 
(SNSF) award to M.M. (grant: 193464), and a Leverhulme 
Trust award to G.F.T. (grant: RPG2014-214).

Conflict of interest: The authors declare no conflict of inter-
est.

Acknowledgements
We would like to thank Claire Mérot, Catherine Peichel, 
Molly Przeworski, and Ole Seehausen for helpful discussions 
and comments on the manuscript and Jerome Kelleher and 
Georgia Tsambos for helpful tips on using msprime. We thank 
the Sanger Institute sequencing core for DNA sequencing. 
We also thank the Tanzania Fisheries Research Institute for 
their assistance and support and COSTECH for a series of 
research permits. Finally, we would like to thank the review-
ers for their time and thoughtful suggestions, which helped us 
to considerably improve this manuscript.

References
Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). 

Basic local alignment search tool. Journal of Molecular Biology, 
215(3), 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2

Auton, A., Fledel-Alon, A., Pfeifer, S., Venn, O., Ségurel, L., Street, T., 
Leffler, E. M., Bowden, R., Aneas, I., Broxholme, J., Humburg, P., 
Iqbal, Z., Lunter, G., Maller, J., Hernandez, R. D., Melton, C., Ven-
kat, A., Nobrega, M. A., Bontrop, R., … McVean, G. (2012). A fine-
scale chimpanzee genetic map from population sequencing. Science 
(New York, N.Y.), 336(6078), 193–198. https://doi.org/10.1126/
science.1216872

Bailey, T. L., Johnson, J., Grant, C. E., & Noble, W. S. (2015). The 
MEME suite. Nucleic Acids Research, 43(W1), W39–W49. https://
doi.org/10.1093/nar/gkv416

Baker, Z., Przeworski, M., & Sella, G. (2023). Down the Penrose stairs, 
or how selection for fewer recombination hotspots maintains their 
existence. eLife, 12, e83769. https://doi.org/10.7554/eLife.83769

Baker, Z., Schumer, M., Haba, Y., Bashkirova, L., & Elife, C. H. (2017). 
Repeated losses of PRDM9-directed recombination despite the 
conservation of PRDM9 across vertebrates. eLife, 6, e24133. 
https://doi.org/10.7554/eLife.24133

Barker, P., Williamson, D., Gasse, F., & Gibert, E. (2003). Climatic and 
volcanic forcing revealed in a 50,000-year diatom record from 
Lake Massoko, Tanzania. Quaternary Research, 60, 9–9. https://
doi.org/10.1016/j.yqres.2003.07.001

Barton, N. H. (2020). On the completion of speciation. Philosophi-
cal Transactions of the Royal Society of London, Series B: Bio-
logical Sciences, 375(1806), 20190530. https://doi.org/10.1098/
rstb.2019.0530

Barton, N. H. (2022). The “New synthesis”. Proceedings of the 
National Academy of Sciences of the United States of America, 
119(30), e2122147119. https://doi.org/10.1073/pnas.2122147119

Battlay, P., Wilson, J., Bieker, V. C., Lee, C., Prapas, D., Petersen, B., 
Craig, S., Boheemen, L. van, Scalone, R., de Silva, N. P., Sharma, A., 
Konstantinović, B., Nurkowski, K. A., Rieseberg, L. H., Connallon, 
T., Martin, M. D., & Hodgins, K. A. (2023). Large haploblocks 
underlie rapid adaptation in the invasive weed Ambrosia artemisii-
folia. Nature Communications, 14, 1717. https://doi.org/10.1038/
s41467-023-37303-4

Baudat, F., Buard, J., Grey, C., Fledel-Alon, A., Ober, C., Przeworski, 
M., Coop, G., & Massy, B. de (2010). PRDM9 is a major deter-
minant of meiotic recombination hotspots in humans and mice. 
Science (New York, N.Y.), 327, 836–840. https://doi.org/10.1126/
science.1183439

Baumdicker, F., Bisschop, G., Goldstein, D., Gower, G., Ragsdale, A. P., 
Tsambos, G., Zhu, S., Eldon, B., Ellerman, E. C., Galloway, J. G., 
Gladstein, A. L., Gorjanc, G., Guo, B., Jeffery, B., Kretzschumar, W. 
W., Lohse, K., Matschiner, M., Nelson, D., Pope, N. S., … Kelleher, J. 
(2021). Efficient ancestry and mutation simulation with msprime 1.0. 
Genetics, 220, iyab229. https://doi.org/10.1093/genetics/iyab229

Bhatia, G., Patterson, N., Sankararaman, S., & Price, A. L. (2013). 
Estimating and interpreting FST: The impact of rare variants. 
Genome Research, 23(9), 1514–1521. https://doi.org/10.1101/
gr.154831.113

Blumer, L. M., Burskaia, V., Artiushin, I., Saha, J., Garcia, J. C., Elkin, 
J., Fischer, B., Zhou, C., Gresham, S., Malinsky, M., Linderoth, T., 
Sawasawa, W., Bista, I., Hickey, A., Kucka, M., Louzada, S., Zatha, 
R., Yang, F., Rusuwa, B., … Svardal, H. (2024). Introgression 
dynamics of sex-linked chromosomal inversions shape the Malawi 
cichlid adaptive radiation. bioRxiv 2024.07.28.605452

Booker, T. R., Yeaman, S., & Whitlock, M. C. (2020). Variation in 
recombination rate affects detection of outliers in genome scans 
under neutrality. Molecular Ecology, 29(22), 4274–4279. https://
doi.org/10.1111/mec.15501

Brand, C. L., Cattani, M. V., Kingan, S. B., Landeen, E. L., & Pres-
graves, D. C. (2018). Molecular evolution at a meiosis gene medi-
ates species differences in the rate and patterning of recombination. 
Current Biology, 28(8), 1289–1295.e4. https://doi.org/10.1016/j.
cub.2018.02.056

Brazier, T., & Glémin, S. (2022). Diversity and determinants of recom-
bination landscapes in flowering plants. PLoS Genetics, 18(8), 
e1010141. https://doi.org/10.1371/journal.pgen.1010141

Burri, R., Nater, A., Kawakami, T., Mugal, C. F., Olason, P. I., Smeds, 
L., Suh, A., Dutoit, L., Bures, S., Garamszegi, L. Z., Hogner, S., 
Moreno, J., Qvarnström, A., Ružić, M., Sæther, S. -A., Saetre, 
G. -P., Török, J., & Ellegren, H. (2015). Linked selection and 
recombination rate variation drive the evolution of the genomic 
landscape of differentiation across the speciation continuum of 
Ficedula flycatchers. Genome Research, 25, 1656–1665. http://doi.
org/10.1101/gr.196485.115

Butlin, R. K., Servedio, M. R., Smadja, C. M., Bank, C., Barton, N. H., 
Flaxman, S. M., Giraud, T., Hopkins, R., Larson, E. L., Maan, M. 
E., Meier, J., Merrill, R., Noor, M. A. F., Ortiz‐Barrientos, D., & 
Qvarnström, A. (2021). Homage to Felsenstein 1981, or why are 
there so few/many species? Evolution, 75(5), 978–988. https://doi.
org/10.1111/evo.14235

Carruthers, M., Edgley, D. E., Saxon, A. D., Gabagambi, N. P., 
Shechonge, A., Miska, E. A., Durbin, R., Bridle, J. R., Turner, G. F., 
& Genner, M. J. (2022). Ecological speciation promoted by diver-
gent regulation of functional genes within African cichlid fishes. 
Molecular Biology and Evolution, 39(11), msac251. https://doi.
org/10.1093/molbev/msac251

Cavassim, M. I. A., Baker, Z., Hoge, C., Schierup, M. H., Schumer, 
M., & Przeworski, M. (2022). PRDM9 losses in vertebrates are  

D
ow

nloaded from
 https://academ

ic.oup.com
/evolut/advance-article/doi/10.1093/evolut/qpae169/7908996 by guest on 06 D

ecem
ber 2024

https://doi.org/10.5061/dryad.v15dv425w
https://doi.org/10.5061/dryad.v15dv425w
https://github.com/MarionTalbi/MasokoPaper
https://doi.org/10.1016/S0022-2836(05)80360-2
https://doi.org/10.1126/science.1216872
https://doi.org/10.1126/science.1216872
https://doi.org/10.1093/nar/gkv416
https://doi.org/10.1093/nar/gkv416
https://doi.org/10.7554/eLife.83769
https://doi.org/10.7554/eLife.24133
https://doi.org/10.1016/j.yqres.2003.07.001
https://doi.org/10.1016/j.yqres.2003.07.001
https://doi.org/10.1098/rstb.2019.0530
https://doi.org/10.1098/rstb.2019.0530
https://doi.org/10.1073/pnas.2122147119
https://doi.org/10.1038/s41467-023-37303-4
https://doi.org/10.1038/s41467-023-37303-4
https://doi.org/10.1126/science.1183439
https://doi.org/10.1126/science.1183439
https://doi.org/10.1093/genetics/iyab229
https://doi.org/10.1101/gr.154831.113
https://doi.org/10.1101/gr.154831.113
https://doi.org/10.1111/mec.15501
https://doi.org/10.1111/mec.15501
https://doi.org/10.1016/j.cub.2018.02.056
https://doi.org/10.1016/j.cub.2018.02.056
https://doi.org/10.1371/journal.pgen.1010141
http://doi.org/10.1101/gr.196485.115
http://doi.org/10.1101/gr.196485.115
https://doi.org/10.1111/evo.14235
https://doi.org/10.1111/evo.14235
https://doi.org/10.1093/molbev/msac251
https://doi.org/10.1093/molbev/msac251


14 Talbi et al.

coupled to those of paralogs ZCWPW1 and ZCWPW2. Proceed-
ings of the National Academy of Sciences of the United States 
of America, 119(9), e2114401119. https://doi.org/10.1073/
pnas.2114401119

Coop, G., & Przeworski, M. (2007). An evolutionary view of human 
recombination. Nature Reviews. Genetics, 8(1), 23–34. https://doi.
org/10.1038/nrg1947

Coster, W. D., Weissensteiner, M. H., & Sedlazeck, F. J. (2021). Towards 
population-scale long-read sequencing. Nature Reviews Genetics, 
22, 572–587. https://doi.org/10.1038/s41576-021-00367-3

Cruickshank, T. E., & Hahn, M. W. (2014). Reanalysis suggests that 
genomic islands of speciation are due to reduced diversity, not 
reduced gene flow. Molecular Ecology, 23(13), 3133–3157. https://
doi.org/10.1111/mec.12796

Danecek, P., Bonfield, J. K., Liddle, J., Marshall, J., Ohan, V., Pollard, M. 
O., Whitwham, A., Keane, T., McCarthy, S. A., Davies, R. M., & Li, 
H. (2021). Twelve years of SAMtools and BCFtools. GigaScience, 
10(2), giab008. https://doi.org/10.1093/gigascience/giab008

DePristo, M. A. M., Banks, E. E., Poplin, R. R., Garimella, K. V. K., 
Maguire, J. R. J., Hartl, C. C., Philippakis, A. A. A., del Angel, G. 
G., Rivas, M. A. M., Hanna, M. M., McKenna, A. A., Fennell, T. 
J. T., Kernytsky, A. M. A., Sivachenko, A. Y. A., Cibulskis, K. K., 
Gabriel, S. B. S., Altshuler, D. D., & Daly, M. J. M. (2011). A frame-
work for variation discovery and genotyping using next-generation 
DNA sequencing data. Nature Genetics, 43, 491–498. https://doi.
org/10.1038/ng.806

Déserts, A. D. des, Bouchet, S., Sourdille, P., & Servin, B. (2021). Evolu-
tion of recombination landscapes in diverging populations of bread 
wheat. Genome Biology and Evolution, 13, evab152. https://doi.
org/10.1093/gbe/evab152

Duranton, M., Allal, F., Fraïsse, C., Bierne, N., Bonhomme, F., & Gag-
naire, P. -A. (2018). The origin and remolding of genomic islands of 
differentiation in the European sea bass. Nature Communications, 
9(1), 2518. https://doi.org/10.1038/s41467-018-04963-6

Escobar, J. S., Glémin, S., & Galtier, N. (2011). GC-biased gene con-
version impacts ribosomal DNA evolution in vertebrates, angio-
sperms, and other eukaryotes. Molecular Biology and Evolution, 
28(9), 2561–2575. https://doi.org/10.1093/molbev/msr079

Excoffier, L., Marchi, N., Marques, D. A., Matthey-Doret, R., Gouy, 
A., & Sousa, V. C. (2021). fastsimcoal2: Demographic inference 
under complex evolutionary scenarios. Bioinformatics, 37(24), 
4882–4885. https://doi.org/10.1093/bioinformatics/btab468

Faria, R., Chaube, P., Morales, H. E., Larsson, T., Lemmon, A. R., Lem-
mon, E. M., Rafajlović, M., Panova, M., Ravinet, M., Johannesson, 
K., Westram, A. M., & Butlin, R. K. (2019a). Multiple chromo-
somal rearrangements in a hybrid zone between Littorina saxati-
lis ecotypes. Molecular Ecology, 28(6), 1375–1393. https://doi.
org/10.1111/mec.14972

Faria, R., Johannesson, K., Butlin, R. K., & Westram, A. M. (2019b). 
Evolving inversions. Trends in Ecology and Evolution, 34(3), 239–
248. https://doi.org/10.1016/j.tree.2018.12.005

Feder, J. L., Egan, S. P., & Nosil, P. (2012). The genomics of speciation-
with-gene-flow. Trends in Genetics: TIG, 28(7), 342–350. https://
doi.org/10.1016/j.tig.2012.03.009

Feldman, M. W., Otto, S. P., & Christiansen, F. B. (1996). Population 
genetic perspectives on the evolution of recombination. Annual 
Review of Genetics, 30, 261–295. https://doi.org/10.1146/annurev.
genet.30.1.261

Felsenstein, J. (1981). Skepticism towards Santa Rosalia, or why 
are there so few kinds of animals? Evolution; International 
Journal of Organic Evolution, 35(1), 124–138. https://doi.
org/10.1111/j.1558-5646.1981.tb04864.x

Gel, B., Díez-Villanueva, A., Serra, E., Buschbeck, M., Peinado, M. A., 
& Malinverni, R. (2016). regioneR: An R/Bioconductor package 
for the association analysis of genomic regions based on permuta-
tion tests. Bioinformatics, 32(2), 289–291. https://doi.org/10.1093/
bioinformatics/btv562

Genestier, A., Duret, L., & Lartillot, N. (2024). Bridging the gap between 
the evolutionary dynamics and the molecular mechanisms of mei-

osis: A model based exploration of the PRDM9 intra- genomic Red 
Queen. PLOS Genetics, 20, e1011274.

Haenel, Q., Laurentino, T. G., Roesti, M., & Berner, D. (2018). Meta‐
analysis of chromosome‐scale crossover rate variation in eukary-
otes and its significance to evolutionary genomics. Molecular 
Ecology, 27(11), 2477–2497. https://doi.org/10.1111/mec.14699

Halldorsson, B. V., Palsson, G., Stefansson, O. A., Jonsson, H., 
Hardarson, M. T., Eggertsson, H. P., Gunnarsson, B., Oddsson, 
A., Halldorsson, G. H., Zink, F., Gudjonsson, S. A., Frigge, M. L., 
Thorleifsson, G., Sigurdsson, A., Stacey, S. N., Sulem, P., Masson, 
G., Helgason, A., Gudbjartsson, D. F., … Stefansson, K. (2019). 
Characterizing mutagenic effects of recombination through a 
sequence-level genetic map. Science (New York, N.Y.), 363(6425), 
eaau1043. https://doi.org/10.1126/science.aau1043

Harringmeyer, O. S., & Hoekstra, H. E. (2022). Chromosomal inver-
sion polymorphisms shape the genomic landscape of deer mice. 
Nature Ecology and Evolution, 6(12), 1965–1979. https://doi.
org/10.1038/s41559-022-01890-0

Henderson, I. R., & Bomblies, K. (2021). Evolution and plasticity 
of genome-wide meiotic recombination rates. Annual Review 
of Genetics, 55(1), 23–43. https://doi.org/10.1146/annurev-
genet-021721-033821

Hoge, C., Manuel, M. de, Mahgoub, M., Okami, N., Fuller, Z., Baner-
jee, S., Baker, Z., McNulty, M., Andolfatto, P., Macfarlan, T. S., 
Schumer, M., Tzika, A. C., & Przeworski, M. (2024). Patterns of 
recombination in snakes reveal a tug of war between PRDM9 
and promoter-like features. Science, 383, eadj7026. https://doi.
org/10.1126/science.adj7026

Jay, P., Whibley, A., Frézal, L., de Cara, M. R., Nowell, R. W., Mallet, 
J., Dasmahapatra, K. K., & Joron, M. (2018). Supergene evolution 
triggered by the introgression of a chromosomal inversion. Current 
Biology, 28, 1839–1845.e3.

Joseph, J., Prentout, D., Laverré, A., Tricou, T., & Duret, L. (2024). 
High prevalence of Prdm9-independent recombination hotspots 
in placental mammals. Proceedings of the National Acad-
emy of Sciences, 121, e2401973121. https://doi.org/10.1073/
pnas.2401973121

Kent, T. V., Uzunović, J., & Wright, S. I. (2017). Coevolution 
between transposable elements and recombination. Philosophi-
cal Transactions of the Royal Society of London, Series B: Bio-
logical Sciences, 372(1736), 20160458. https://doi.org/10.1098/
rstb.2016.0458

Lam, I., & Keeney, S. (2015). Nonparadoxical evolutionary stability 
of the recombination initiation landscape in yeast. Science (New 
York, N.Y.), 350(6263), 932–937. https://doi.org/10.1126/science.
aad0814

Latrille, T., Duret, L., & Lartillot, N. (2017). The Red Queen model 
of recombination hot-spot evolution: A theoretical investiga-
tion. Philosophical Transactions of the Royal Society of London, 
Series B: Biological Sciences, 372(1736), 20160463. https://doi.
org/10.1098/rstb.2016.0463

Li, H. (2013). Aligning sequence reads, clone sequences and assembly 
contigs with BWA-MEM. arXiv.org q-bio.GN.

Li, H., & Ralph, P. (2018). Local PCA shows how the effect of popula-
tion structure differs along the genome. Genetics, 211(1), 289–304. 
https://doi.org/10.1534/genetics.118.301747

Ma, J., & Amos, C. I. (2018). Investigation of inversion polymorphisms 
in the human genome using principal components analysis. PLoS 
One, 7(7), e40224. https://doi.org/10.1371/journal.pone.0040224

Malinsky, M., Challis, R. J., Tyers, A. M., Schiffels, S., Terai, Y., Nga-
tunga, B. P., Miska, E. A., Durbin, R., Genner, M. J., & Turner, G. F. 
(2015). Genomic islands of speciation separate cichlid ecomorphs 
in an East African crater lake. Science, 350(6267), 1493–1498. 
https://doi.org/10.1126/science.aac9927

Malinsky, M., Svardal, H., Tyers, A. M., Miska, E. A., Genner, M. J., 
Turner, G. F., & Durbin, R. (2018). Whole-genome sequences of 
Malawi cichlids reveal multiple radiations interconnected by gene 
flow. Nature Ecology & Evolution, 2(12), 1940–1955. https://doi.
org/10.1038/s41559-018-0717-x

D
ow

nloaded from
 https://academ

ic.oup.com
/evolut/advance-article/doi/10.1093/evolut/qpae169/7908996 by guest on 06 D

ecem
ber 2024

https://doi.org/10.1073/pnas.2114401119
https://doi.org/10.1073/pnas.2114401119
https://doi.org/10.1038/nrg1947
https://doi.org/10.1038/nrg1947
https://doi.org/10.1038/s41576-021-00367-3
https://doi.org/10.1111/mec.12796
https://doi.org/10.1111/mec.12796
https://doi.org/10.1093/gigascience/giab008
https://doi.org/10.1038/ng.806
https://doi.org/10.1038/ng.806
https://doi.org/10.1093/gbe/evab152
https://doi.org/10.1093/gbe/evab152
https://doi.org/10.1038/s41467-018-04963-6
https://doi.org/10.1093/molbev/msr079
https://doi.org/10.1093/bioinformatics/btab468
https://doi.org/10.1111/mec.14972
https://doi.org/10.1111/mec.14972
https://doi.org/10.1016/j.tree.2018.12.005
https://doi.org/10.1016/j.tig.2012.03.009
https://doi.org/10.1016/j.tig.2012.03.009
https://doi.org/10.1146/annurev.genet.30.1.261
https://doi.org/10.1146/annurev.genet.30.1.261
https://doi.org/10.1111/j.1558-5646.1981.tb04864.x
https://doi.org/10.1111/j.1558-5646.1981.tb04864.x
https://doi.org/10.1093/bioinformatics/btv562
https://doi.org/10.1093/bioinformatics/btv562
https://doi.org/10.1111/mec.14699
https://doi.org/10.1126/science.aau1043
https://doi.org/10.1038/s41559-022-01890-0
https://doi.org/10.1038/s41559-022-01890-0
https://doi.org/10.1146/annurev-genet-021721-033821
https://doi.org/10.1146/annurev-genet-021721-033821
https://doi.org/10.1126/science.adj7026
https://doi.org/10.1126/science.adj7026
https://doi.org/10.1073/pnas.2401973121
https://doi.org/10.1073/pnas.2401973121
https://doi.org/10.1098/rstb.2016.0458
https://doi.org/10.1098/rstb.2016.0458
https://doi.org/10.1126/science.aad0814
https://doi.org/10.1126/science.aad0814
https://doi.org/10.1098/rstb.2016.0463
https://doi.org/10.1098/rstb.2016.0463
https://doi.org/10.1534/genetics.118.301747
https://doi.org/10.1371/journal.pone.0040224
https://doi.org/10.1126/science.aac9927
https://doi.org/10.1038/s41559-018-0717-x
https://doi.org/10.1038/s41559-018-0717-x


Evolution (2024), Vol. XX 15

Marques, D. A., Meier, J. I., & Seehausen, O. (2019). A combinato-
rial view on speciation and adaptive radiation. Trends in Ecol-
ogy and Evolution, 34(6), 531–544. https://doi.org/10.1016/j.
tree.2019.02.008

Martin, S. H., Davey, J. W., Salazar, C., & Jiggins, C. D. (2019). Recom-
bination rate variation shapes barriers to introgression across 
butterfly genomes. PLoS Biology, 17(2), e2006288. https://doi.
org/10.1371/journal.pbio.2006288

Matthey-Doret, R., & Whitlock, M. C. (2019). Background selection 
and FST: Consequences for detecting local adaptation. Molecular 
Ecology, 28, mec.15197-3914. https://doi.org/10.1111/mec.15197

McDonald, M. J., Rice, D. P., & Desai, M. M. (2016). Sex speeds adap-
tation by altering the dynamics of molecular evolution. Nature, 
531(7593), 233–236. https://doi.org/10.1038/nature17143

Mérot, C. (2020). Making the most of population genomic data to 
understand the importance of chromosomal inversions for adap-
tation and speciation. Molecular Ecology, 29(14), 2513–2516. 
https://doi.org/10.1111/mec.15500

Mérot, C., Oomen, R. A., Tigano, A., & Wellenreuther, M. (2020). A 
roadmap for understanding the evolutionary significance of struc-
tural genomic variation. Trends in Ecology and Evolution, 35(7), 
561–572. https://doi.org/10.1016/j.tree.2020.03.002

Miller, W., Rosenbloom, K., Hardison, R. C., Hou, M., Taylor, J., Raney, 
B., Burhans, R., King, D. C., Baertsch, R., Blankenberg, D., Pond, S. 
L. K., Nekrutenko, A., Giardine, B., Harris, R. S., Tyekucheva, S., 
Diekhans, M., Pringle, T. H., Murphy, W. J., Lesk, A., … Kent, W. J. 
(2007). 28-way vertebrate alignment and conservation track in the 
UCSC Genome Browser. Genome Research, 17, 1797–1808. http://
www.genome.org/cgi/doi/10.1101/gr.6761107

Munby, H., Linderoth, T., Fischer, B., Du, M., Vernaz, G., Tyers, A. 
M., Ngatunga, B. P., Shechonge, A., Denise, H., McCarthy, S. A., 
Bista, I., Miska, E. A., Santos, M. E., Genner, M. J., Turner, G. F., 
& Durbin, R. (2021). Differential use of multiple genetic sex deter-
mination systems in divergent ecomorphs of an African crater lake 
cichlid. bioRxiv 2021.08.05.455235

Myers, S., Bowden, R., Tumian, A., Bontrop, R. E., Freeman, C., Mac-
Fie, T. S., McVean, G., & Donnelly, P. (2010). Drive against hotspot 
motifs in primates implicates the PRDM9 gene in meiotic recombi-
nation. Science (New York, N.Y.), 327(5967), 876–879. https://doi.
org/10.1126/science.1182363

Nei, M. (1967). Modification of linkage intensity by natural selec-
tion. Genetics, 57(3), 625–641. https://doi.org/10.1093/genet-
ics/57.3.625

Nielsen, R. (2006). Why sex? Science, 311(5763), 960–961. https://doi.
org/10.1126/science.1124663

O’Leary, N. A., Wright, M. W., Brister, J. R., Ciufo, S., Haddad, D., 
McVeigh, R., Rajput, B., Robbertse, B., Smith-White, B., Ako-Adjei, 
D., Astashyn, A., Badretdin, A., Bao, Y., Blinkova, O., Brover, V., Chet-
vernin, V., Choi, J., Cox, E., Ermolaeva, O., … Pruitt, K. D. (2016). 
Reference sequence (RefSeq) database at NCBI: Current status, taxo-
nomic expansion, and functional annotation. Nucleic Acids Research, 
44(D1), D733–D745. https://doi.org/10.1093/nar/gkv1189

Ortiz-Barrientos, D., Engelstädter, J., & Rieseberg, L. H. (2016). 
Recombination rate evolution and the origin of species. Trends in 
Ecology & Evolution, 31(3), 226–236. https://doi.org/10.1016/j.
tree.2015.12.016

Ortiz‐Barrientos, D., & James, M. E. (2017). Evolution of recombi-
nation rates and the genomic landscape of speciation. Journal of 
Evolutionary Biology, 30(8), 1519–1521. https://doi.org/10.1111/
jeb.13116

Otto, S. P., & Barton, N. H. (2001). Selection for recombination in 
small populations. Evolution, 55(10), 1921–1931. https://doi.
org/10.1111/j.0014-3820.2001.tb01310.x

Otto, S. P., & Payseur, B. A. (2019). Crossover interference: Shed-
ding light on the evolution of recombination. Annual Review 
of Genetics, 53(1), 19–44. https://doi.org/10.1146/annurev-
genet-040119-093957

Paradis, E., Claude, J., & Strimmer, K. (2004). APE: Analyses of phy-
logenetics and evolution in R language. Bioinformatics (Oxford, 

England), 20(2), 289–290. https://doi.org/10.1093/bioinformatics/
btg412

Patterson, N., Price, A. L., & Reich, D. (2006). Population structure 
and eigenanalysis. PLoS Genetics, 2(12), e190–e190. https://doi.
org/10.1371/journal.pgen.0020190

Peñalba, J. V., & Wolf, J. B. W. (2020). From molecules to popula-
tions: Appreciating and estimating recombination rate variation. 
Nature Reviews Genetics, 21(8), 476–492. https://doi.org/10.1038/
s41576-020-0240-1

Persikov, A. V., Osada, R., & Singh, M. (2009). Predicting DNA rec-
ognition by Cys2His2 zinc finger proteins. Bioinformatics, 25(1), 
22–29. https://doi.org/10.1093/bioinformatics/btn580

Persikov, A. V., & Singh, M. (2014). De novo prediction of DNA- 
binding specificities for Cys2His2 zinc finger proteins. Nucleic 
Acids Research, 42(1), 97–108. https://doi.org/10.1093/nar/gkt890

Petronczki, M., Siomos, M. F., & Nasmyth, K. (2003). Un ménage 
à Quatre the molecular biology of chromosome segregation in 
meiosis. Cell, 112(4), 423–440. https://doi.org/10.1016/s0092-
8674(03)00083-7

Ponticelli, A. S., Sena, E. P., & Smith, G. R. (1988). Genetic and physi-
cal analysis of the M26 recombination hotspot of Schizosaccharo-
myces pombe. Genetics, 119(3), 491–497. https://doi.org/10.1093/
genetics/119.3.491

Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A. R., 
Bender, D., Maller, J., Sklar, P., de Bakker, P. I. W., Daly, M. J., & 
Sham, P. C. (2007). PLINK: A tool set for whole-genome associa-
tion and population-based linkage analyses. The American Journal 
of Human Genetics, 81, 559–575. https://doi.org/10.1086/519795

Ravinet, M., Faria, R., Butlin, R. K., Galindo, J., Bierne, N., Rafajlović, 
M., Noor, M. A. F., Mehlig, B., & Westram, A. M. (2017). Inter-
preting the genomic landscape of speciation: A road map for find-
ing barriers to gene flow. Journal of Evolutionary Biology, 30(8), 
1450–1477. https://doi.org/10.1111/jeb.13047

Raynaud, M., Gagnaire, P. -A., & Galtier, N. (2023). Performance and 
limitations of linkage-disequilibrium-based methods for inferring 
the genomic landscape of recombination and detecting hotspots: 
A simulation study. Peer Community Journal, 3, e27. https://doi.
org/10.24072/pcjournal.254

Reeve, J., Butlin, R. K., Koch, E. L., Stankowski, S., & Faria, R. (2023). 
Chromosomal inversion polymorphisms are widespread across 
the species ranges of rough periwinkles (Littorina saxatilis and L. 
arcana). Molecular Ecology. https://doi.org/10.1111/mec.17160

Rice, P., Longden, I., & Bleasby, A. (2000). EMBOSS: The European 
molecular biology open software suite. Trends in Genetics, 16(6), 
276–277. https://doi.org/10.1016/s0168-9525(00)02024-2

Rice, W. R., & Chippindale, A. K. (2001). Sexual recombination and 
the power of natural selection. Science, 294(5542), 555–559. 
https://doi.org/10.1126/science.1061380

Ritz, K. R., Noor, M. A. F., & Singh, N. D. (2017). Variation in recom-
bination rate: Adaptive or not? Trends in Genetics, 33(5), 364–374. 
https://doi.org/10.1016/j.tig.2017.03.003

Rolland, J., Henao-Diaz, L. F., Doebeli, M., Germain, R., Harmon, L. 
J., Knowles, L. L., Liow, L. H., Mank, J. E., Machac, A., Otto, S. 
P., Pennell, M., Salamin, N., Silvestro, D., Sugawara, M., Uyeda, 
J., Wagner, C. E., & Schluter, D. (2023). Conceptual and empirical 
bridges between micro- and macroevolution. Nature Ecology and 
Evolution, 7(8), 1181–1193. https://doi.org/10.1038/s41559-023-
02116-7

Rowan, B. A., Heavens, D., Feuerborn, T. R., Tock, A. J., Henderson, I. 
R., & Weigel, D. (2019). An ultra high-density Arabidopsis thali-
ana crossover map that refines the influences of structural variation 
and epigenetic features. Genetics, 213(3), 771–787. https://doi.
org/10.1534/genetics.119.302406

Samuk, K., Manzano-Winkler, B., Ritz, K. R., & Noor, M. A. F. (2020). 
Natural selection shapes variation in genome-wide recombination 
rate in Drosophila pseudoobscura. Current Biology, 30(8), 1517–
1528.e6. https://doi.org/10.1016/j.cub.2020.03.053

Samuk, K., Owens, G. L., Delmore, K. E., Miller, S. E., Rennison, D. J., 
& Schluter, D. (2017). Gene flow and selection interact to promote 

D
ow

nloaded from
 https://academ

ic.oup.com
/evolut/advance-article/doi/10.1093/evolut/qpae169/7908996 by guest on 06 D

ecem
ber 2024

https://doi.org/10.1016/j.tree.2019.02.008
https://doi.org/10.1016/j.tree.2019.02.008
https://doi.org/10.1371/journal.pbio.2006288
https://doi.org/10.1371/journal.pbio.2006288
https://doi.org/10.1111/mec.15197
https://doi.org/10.1038/nature17143
https://doi.org/10.1111/mec.15500
https://doi.org/10.1016/j.tree.2020.03.002
http://www.genome.org/cgi/doi/10.1101/gr.6761107
http://www.genome.org/cgi/doi/10.1101/gr.6761107
https://doi.org/10.1126/science.1182363
https://doi.org/10.1126/science.1182363
https://doi.org/10.1093/genetics/57.3.625
https://doi.org/10.1093/genetics/57.3.625
https://doi.org/10.1126/science.1124663
https://doi.org/10.1126/science.1124663
https://doi.org/10.1093/nar/gkv1189
https://doi.org/10.1016/j.tree.2015.12.016
https://doi.org/10.1016/j.tree.2015.12.016
https://doi.org/10.1111/jeb.13116
https://doi.org/10.1111/jeb.13116
https://doi.org/10.1111/j.0014-3820.2001.tb01310.x
https://doi.org/10.1111/j.0014-3820.2001.tb01310.x
https://doi.org/10.1146/annurev-genet-040119-093957
https://doi.org/10.1146/annurev-genet-040119-093957
https://doi.org/10.1093/bioinformatics/btg412
https://doi.org/10.1093/bioinformatics/btg412
https://doi.org/10.1371/journal.pgen.0020190
https://doi.org/10.1371/journal.pgen.0020190
https://doi.org/10.1038/s41576-020-0240-1
https://doi.org/10.1038/s41576-020-0240-1
https://doi.org/10.1093/bioinformatics/btn580
https://doi.org/10.1093/nar/gkt890
https://doi.org/10.1016/s0092-8674(03)00083-7
https://doi.org/10.1016/s0092-8674(03)00083-7
https://doi.org/10.1093/genetics/119.3.491
https://doi.org/10.1093/genetics/119.3.491
https://doi.org/10.1086/519795
https://doi.org/10.1111/jeb.13047
https://doi.org/10.24072/pcjournal.254
https://doi.org/10.24072/pcjournal.254
https://doi.org/10.1111/mec.17160
https://doi.org/10.1016/s0168-9525(00)02024-2
https://doi.org/10.1126/science.1061380
https://doi.org/10.1016/j.tig.2017.03.003
https://doi.org/10.1038/s41559-023-02116-7
https://doi.org/10.1038/s41559-023-02116-7
https://doi.org/10.1534/genetics.119.302406
https://doi.org/10.1534/genetics.119.302406
https://doi.org/10.1016/j.cub.2020.03.053


16 Talbi et al.

adaptive divergence in regions of low recombination. Molecular 
Ecology, 26(17), 4378–4390. https://doi.org/10.1111/mec.14226

Schluter, D., & Rieseberg, L. H. (2022). Three problems in the genetics 
of speciation by selection. Proceedings of the National Academy of 
Sciences of the United States of America, 119(30), e2122153119. 
https://doi.org/10.1073/pnas.2122153119

Schumer, M., Xu, C., Powell, D. L., Durvasula, A., Skov, L., Holland, C., 
Blazier, J. C., Sankararaman, S., Andolfatto, P., Rosenthal, G. G., 
& Przeworski, M. (2018). Natural selection interacts with recom-
bination to shape the evolution of hybrid genomes. Science (New 
York, N.Y.), 360(6389), 656–660. https://doi.org/10.1126/science.
aar3684

Shanfelter, A. F., Archambeault, S. L., & White, M. A. (2019). Diver-
gent fine-scale recombination landscapes between a freshwater and 
marine population of Threespine stickleback fish. Genome Biology 
and Evolution, 11(6), 1573–1585. https://doi.org/10.1093/gbe/
evz090

Singhal, S., Leffler, E. M., Sannareddy, K., Turner, I., Venn, O., Hooper, 
D. M., Strand, A. I., Li, Q., Raney, B., Balakrishnan, C. N., Griffith, 
S. C., McVean, G., & Przeworski, M. (2015). Stable recombina-
tion hotspots in birds. Science, 350(6263), 928–932. https://doi.
org/10.1126/science.aad0843

Spence, J. P., & Song, Y. S. (2019). Inference and analysis of  
population-specific fine-scale recombination maps across 26 
diverse human populations. Science Advances, 5(10), eaaw9206. 
https://doi.org/10.1126/sciadv.aaw9206

Szankasi, P., Heyer, W. -D., Schuchert, P., & Kohli, J. (1988). DNA 
sequence analysis of the ade6 gene of Schizosaccharomyces pombe 
wild-type and mutant alleles including the recombination hot spot 
allele ade6-M26. Journal of Molecular Biology, 204(4), 917–925. 
https://doi.org/10.1016/0022-2836(88)90051-4

Terhorst, J., Kamm, J. A., & Song, Y. S. (2017). Robust and scal-
able inference of population history from hundreds of unphased 
whole genomes. Nature Genetics, 49(2), 303–309. https://doi.
org/10.1038/ng.3748

Todesco, M., Owens, G. L., Bercovich, N., Légaré, J. -S., Soudi, S., 
Burge, D. O., Huang, K., Ostevik, K. L., Drummond, E. B. M., 
Imerovski, I., Lande, K., Pascual-Robles, M. A., Nanavati, M., Jah-
ani, M., Cheung, W., Staton, S. E., Muños, S., Nielsen, R., Donovan, 
L. A., … Rieseberg, L. H. (2020). Massive haplotypes underlie eco-
typic differentiation in sunflowers. Nature, 584(7822), 602–607. 
https://doi.org/10.1038/s41586-020-2467-6

Úbeda, F., & Wilkins, J. F. (2010). The Red Queen theory of recombi-
nation hotspots. Journal of Evolutionary Biology, 24(3), 541–553. 
https://doi.org/10.1111/j.1420-9101.2010.02187.x

Venu, V., Harjunmaa, E., Dreau, A., Brady, S., Absher, D., Kingsley, D. 
M., & Jones, F. C. (2024). Fine-scale contemporary recombination 
variation and its fitness consequences in adaptively diverging stick-
leback fish. Nature Ecology and Evolution, 8, 1337–1352. https://
doi.org/10.1038/s41559-024-02434-4

Vernaz, G., Hudson, A. G., Santos, M. E., Fischer, B., Carruthers, M., 
Shechonge, A. H., Gabagambi, N. P., Tyers, A. M., Ngatunga, B. P., 
Malinsky, M., Durbin, R., Turner, G. F., Genner, M. J., & Miska, E. 
A. (2022). Epigenetic divergence during early stages of speciation in 
an African crater lake cichlid fish. Nature Ecology and Evolution, 
6, 1940–1951. https://doi.org/10.1038/s41559-022-01894-w

Wellenreuther, M., & Bernatchez, L. (2018). Eco-evolutionary genom-
ics of chromosomal inversions. Trends in Ecology and Evolution, 
33(6), 427–440. https://doi.org/10.1016/j.tree.2018.04.002

Yeaman, S. (2022). Evolution of polygenic traits under global vs local 
adaptation. Genetics, 220(1), iyab134. https://doi.org/10.1093/
genetics/iyab134

D
ow

nloaded from
 https://academ

ic.oup.com
/evolut/advance-article/doi/10.1093/evolut/qpae169/7908996 by guest on 06 D

ecem
ber 2024

https://doi.org/10.1111/mec.14226
https://doi.org/10.1073/pnas.2122153119
https://doi.org/10.1126/science.aar3684
https://doi.org/10.1126/science.aar3684
https://doi.org/10.1093/gbe/evz090
https://doi.org/10.1093/gbe/evz090
https://doi.org/10.1126/science.aad0843
https://doi.org/10.1126/science.aad0843
https://doi.org/10.1126/sciadv.aaw9206
https://doi.org/10.1016/0022-2836(88)90051-4
https://doi.org/10.1038/ng.3748
https://doi.org/10.1038/ng.3748
https://doi.org/10.1038/s41586-020-2467-6
https://doi.org/10.1111/j.1420-9101.2010.02187.x
https://doi.org/10.1038/s41559-024-02434-4
https://doi.org/10.1038/s41559-024-02434-4
https://doi.org/10.1038/s41559-022-01894-w
https://doi.org/10.1016/j.tree.2018.04.002
https://doi.org/10.1093/genetics/iyab134
https://doi.org/10.1093/genetics/iyab134

	Rapid evolution of recombination landscapes during the divergence of cichlid ecotypes in Lake Masoko
	Introduction
	Methods
	Variant calling and filtering
	Sample selection for recombination analyses
	Genome annotation
	Inference of demographic history and estimation of the level of gene flow
	Subsampling and permutations over individuals
	Inference of recombination rates
	Neutral coalescent simulations
	Processing and comparisons of recombination maps
	Filtered maps
	Hotspot analyses
	Measures of genetic differentiation
	Distance from CpG islands and transcription start sites
	Inference of haplotype blocks
	Characterization of haplotype blocks
	PRDM9 ortholog research and distance from ZF binding motif
	Contribution of genomic features to recombination divergence

	Results
	Study system and demographic history
	Population recombination landscapes differ between ecotypes
	Characterizing recombination rate evolution
	Large haplotype blocks contribute to evolution of recombination rates

	Discussion
	Supplementary material
	Acknowledgements
	References


